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A note on the effect of surface contamination in
water wave damping
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(Received 30 March 1999 and in revised form 19 December 1999)

Asymptotic formulas are derived for the effect of contamination on surface wave
damping in a brimful circular cylinder; viscosity is assumed to be small and con-
tamination is modelled through Marangoni elasticity with insoluble surfactant. It is
seen that an appropriately chosen finite Marangoni elasticity provides an explanation
for a significant amount of the unexplained additional damping rate in a well-known
experiment by Henderson & Miles (1994); discrepancies are within 15%, significantly
lower than those encountered by Henderson & Miles (1994) under the assumption of
inextensible film.

1. Introduction
The precise theoretical prediction (and explanation) of water wave damping has

been a long standing open problem (Henderson & Miles 1994, hereinafter referred
to as HM94). Its solution is essential for various purposes, including the appropriate
modelling of weakly-nonlinear water wave dynamics. Three sources of damping are
readily identified:

(a) Viscous dissipation in both the oscillatory boundary layers and the bulk. The
latter is second order as viscosity goes to zero and was systematically ignored in the
literature. But for the usual small-but-fixed values of viscosity this effect must not be
ignored if the contact line is pinned, as recently shown by Martel, Nicolás & Vega
(1998, hereinafter referred to as MNV), who obtained results in good agreement with
the experiments in HM94; see also Howell et al. (2000) for further comparisons.

(b) Contact line dynamics, which is a not-well-understood effect and is modelled by
phenomenological formulas (see, e.g., HM94) and is avoided by pinning the contact
line.

(c) Surface contamination, again a not-well-understood effect that is most likely to
be present in water unless much care is taken in the experimental setup. It is modelled
by phenomenological formulas (Dorrestein 1951; Levich 1962; Miles 1967) that also
apply to thin films of highly viscous Newtonian fluids on the surface (Jenkins &
Dysthe 1997).

For pinned contact line, HM94 assumed that the free surface is inextensible and
obtained results whose error ranged in the interval 20–80%, depending on the mode.
Following MNV, Miles & Henderson (1998) included the effect of viscous dissipation
in the bulk to obtain slightly better, but still not-good-enough results. The error
was larger for lower modes, and this point is essential to anticipate what must be
done to obtain better results, namely to take a finite Marangoni elasticity. This is
known to be a good candidate for additional damping, as first shown by Dorrestein
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(1951), but it was disregarded in HM94 after a too-simple asymptotic estimate of the
role of finite elasticity for high-order modes, which led them to expect that it would
increase with the wavenumber. But the opposite is true if the wavelength is large
compared to the capillary length (which was the case in the experiment), as seen by a
careful look at well-known formulas for free contact lines (Miles 1967, 1991), which
should also give the qualitative behaviour for the fixed-contact-line case. Similar
asymptotically correct formulas for fixed contact lines are not available and will be
derived below. These could be useful for safe comparison with experiments and thus
help to elucidate the role of contamination (and, more generally, of surfactants) on
surface wave damping.

For simplicity we consider a circular cylinder of radius R and depth d, but the results
below are straightforwardly extended to other geometries. As in MNV, we use R and
the gravitational time (R/g)1/2 for non-dimensionalization, linearize around the qui-
escent state and make the usual mode decomposition, (u, w, p, f) = (u, w, p, f) exp (Ωt),
where u and w are the horizontal and vertical velocity components, p is the pressure
and f is the free-surface deflection, to obtain

∇ · u+ wz = 0, (1.1)

Ωu = −∇p+ C(∆u+ uzz), Ωw = −pz + C(∆w + wzz), (1.2)

u = 0, w = 0 at z = −Λ and at r = 1, (1.3)

w = Ωf, p− f + B−1∆f = 2Cwz at z = 0, (1.4)

C1/2(uz + ∇w) = (γ/Ω)∇(∇ · u) at z = 0, (1.5)

f = 0 at r = 1,

∫ 2π

0

∫ 1

0

f(r, θ)r dr dθ = 0, (1.6)

where ∇, ∇· and ∆ are the horizontal gradient, divergence and Laplacian operators,
and we use a polar coordinate system in the horizontal plane, with associated unit
vectors er and eθ . The problem depends on the slenderness Λ = d/R, the gravitational
Reynolds number C−1 = (gR3)1/2/ν, the Bond number B = ρgR2/σ and the non-
dimensional Marangoni elasticity of the free surface γ, defined as

γ = Γ0(dσ/dΓ0)C
1/2/(µ

√
gR), (1.7)

where Γ0(dσ/dΓ0) is a dimensional measure of Marangoni elasticity in terms of the
surface tension σ (denoted in Henderson 1998 as π) and the surfactant concentration
Γ0. For convenience we scale γ with C1/2 and consider the limit

C → 0, B−1 = O(1), (1.8)

which is realistic for water (and many liquids) except for containers with millimetric
depth.

The only requirement for the validity of the linear approximation above is that the
steepness of the surface wave is small, as seen when using the strained coordinate
η = (z − F)Λ/(Λ + F), where F is the free-surface deflection. In particular, F can
be large compared to the thickness of the free surface boundary layer (see below),
even though the unperturbed free surface z = 0 is outside this boundary layer in the
original variables.
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2. Damping rate and frequency in a brimful circular cylinder
In the limit (1.8) the solutions of (1.1)–(1.6) exhibit oscillatory boundary layers near

the solid walls and the free surface, whose thicknesses are of the order of C1/2. The
eigenvalue Ω and the associated eigenfunctions in the bulk (outside the boundary
layers) are expanded as

Ω = Ω0 + C1/2Ω1 + CΩ2 · · · , (2.1)

(u, w, p, f) = (u0, w0, p0, f0) + C1/2(u1, w1, p1, f1) + · · · . (2.2)

The leading-order terms are given by the usual strictly inviscid problem, which is
solvable in semi-analytical form (HM94; MNV). Marangoni elasticity produces a
jump in the tangential velocity across the free-surface boundary layer (instead of the
jump in tangential stress encountered for clean surfaces), where the solution is

u = u0
0 + (ũ0

0 − u0
0) exp (Ω

1/2
0 η) + O(C1/2), (2.3)

in terms of the stretched coordinate η = z/C1/2. Here ũ0
0 is the horizontal velocity at

the free surface η = 0 and u0
0 is the horizontal velocity of the outer inviscid flow at

z = 0. To leading order, (1.5) and (2.3) yield

γ∇(∇ · ũ0
0) = Ω

3/2
0 (ũ0

0 − u0
0) if 0 6 r < 1, ũ0

0 · er = 0 at r = 1. (2.4)

Since (see MNV)

u0
0 = −

∞∑
n=0

an[λnJ
′
m(λnr)er + mr−1Jm(λnr)eθ] exp (imθ)

Ω0Jm(λn)
, (2.5)

where m is the azimuthal wavenumber of the eigenmode considered, λ0 = 0, λ1, . . . ,
are the roots of J ′m(λn) = 0 and an is as defined in MNV (in (A15a)–(A15b)), the
solution of (2.4) is readily calculated as

ũ0
0 = −Ω1/2

0

∞∑
n=0

an[λnJ
′
m(λnr)er + mr−1Jm(λnr)eθ] exp (imθ)

(Ω
3/2
0 + γλ2

n)Jm(λn)
. (2.6)

Note that ũ0
0 and u0

0 are not proportional to each other because ∇(∇ · u0
0) is not

proportional to u0
0. Then the simpler boundary condition suggested in HM94 (p. 286,

(1.2)) does not apply for pinned ends and must be taken as a phenomenological one;
but the computations for inextensible film in HM94 and Miles & Henderson (1998)
do not rely on this boundary condition, and coincide with the one derived below in
the limit γ →∞.

In order to calculate Ω1 and Ω2 we use the following solvability condition, which is
the natural extension of that introduced in MNV:

(Ω − Ω0)I1 = −I2 − I3 − I4, (2.7)

where I1, I2 and I3 are as defined and calculated in MNV and

I4 = −C1/2Ω
1/2
0

∫ 2π

0

∫ 1

0

u0
0 · (ũ0

0 − u0
0)r dr dθ + O(C) (2.8)

accounts for the effect of contamination. Note that the solid walls and the free surface
are inside the boundary layers, and thus the velocity components u and v must be
taken from the solution in the boundary layers; then |I3| and |I4| are seen to be of
order C1/2, while |I2| ∼ C and |I1| ∼ 1. When (2.1) is substituted into (2.7) we obtain
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C1/2Ω1 + CΩ2 + · · · = −(I2 + I3 + I4)/I1. At order C1/2 this expression yields

Ω1 = Ωwall
1 + Ωcont

1 , (2.9)

where Ωwall
1 comes from I3 and exactly coincides with the O(C1/2) term in MNV and

Ωcont
1 = −I4/I1; or invoking the expression for I1 in MNV and using (2.5), (2.6) and

(2.8),

Ωcont
1 = −

[ ∞∑
n=0

(λ2
n − m2)λ−1

n a
2
n tanh (λnΛ)

]−1 ∞∑
n=0

γΩ
1/2
0 λ2

n(λ
2
n − m2)a2

n

2(Ω
3/2
0 + γλ2

n)
. (2.10)

The real part of −Ωwall
1 comes from viscous dissipation in the Stokes boundary layers

attached to the walls, and the real part of −Ωcont
1 comes from viscous dissipation

enhanced by contamination in both the boundary layer attached to the free surface
and the free surface itself. Also, as γ → ∞, ũ0

0 → 0 (see (2.6)), and (2.10) provides the
same result as that in HM94 for inextensible film.

As in MNV, the O(C) correction in (2.1) can be written as

Ω2 = Ωbulk
2 + Ωwall

2 + Ωcont
2 , (2.11)

where −Ωbulk
2 and −Ωwall

2 are real, and come from viscous dissipation in the bulk
and a correction to viscous dissipation in the wall boundary layers respectively;
they exactly coincide with their counterparts calculated in MNV. Ωcont

2 comes from
the O(C) correction provided by I4 and a part of I2, and could be calculated by a
(somewhat tedious) procedure like that followed in MNV to calculate Ωwall

2 . Here we
only point out that |Ωwall

1 | and −Ωwall
2 are typically (i.e. except for small Λ) small

compared to −Ωbulk
2 ; as explained in MNV, this is so because the boundary layers

attached to the solid walls are fairly weak, namely the jump in tangential velocity
across these layers is small (as compared to the velocity in the bulk). Thus, even
though it is asymptotically inconsistent, if we ignore Ωwall

2 but retain Ωbulk
2 we obtain

numerically good approximations (see MNV; Miles & Henderson 1998). But there is
not a similar argument to retain Ωbulk

2 and neglect Ωcont
2 (which is also asymptotically

inconsistent) because the boundary layer near the interface is no longer weak.
Here we have completely neglected the effects of surfactant solubility and surface

viscosity, which are of independent interest and are accounted for by replacing the
boundary condition (1.5) by

C1/2(uz + ∇w) = [δ1 + γ/(Ω + γ1Ω
1/2)]∇(∇ · u) + δ2∆u at z = 0. (2.12)

γ1, δ1 and δ2 account for surfactant solubility and dilatational and shear surface
viscosities respectively. The effects of γ1 and δ1 are readily taken into account by

just replacing γ/Ω0 by γ∗ = δ1 + γ/(Ω0 + γ1Ω
1/2
0 ) in (2.4), (2.6) and (2.10). The effect

of shear viscosity instead requires replacing the boundary condition in (2.4) by the
no-slip condition ũ0

0 = 0 (and, of course, adding δ2∆u to the left-hand side of the
equation). The solution of the resulting two-dimensional problem for general δ2 is
much more involved and is omited here. But if δ2 � 1 this problem exhibits a Stokes-
like boundary layer in the free surface near the contact line (where the azimuthal
surface velocity component slows down to zero) that provides the leading-order effect
of shear surface viscosity. The resulting expression for Ωcont

1 is obtained by just
replacing in (2.10) the second factor on the right-hand side by

∞∑
n=0

γ∗λ2
n(λ

2
n − m2)a2

n

2(Ω
1/2
0 + γ∗λ2

n)
+

√
δ2

δ∗

∞∑
n=0

m2Ω
1/2
0 an

Ω
1/2
0 + γ∗λ2

n

∞∑
n=0

ān + O

(
δ2

|δ∗|
)
, (2.13)
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σ = 66 dyn cm−1

σ = 66 (72.4) dyn cm−1 γ = ∞
γ = 0.8 Approximation

This paper Experiment by H & M

(m, q) f ∆ ∆E/∆ fE ∆E f ∆ ∆E/∆

(1, 0) 4.61 (4.66) 5.02 (5.01) 1.15 (1.15) 4.63 5.8 4.64 3.19 1.8
(2, 0) 6.20 (6.31) 6.70 (6.73) 1.15 (1.15) 6.19 7.7 6.29 4.70 1.6
(0, 1) 6.69 (6.80) 6.22 (6.31) 1.16 (1.14) 6.68 7.2 6.70 4.45 1.6
(3, 0) 7.59 (7.76) 7.96 (8.01) 1.02 (1.01) 7.62 8.1 7.73 6.06 1.3
(1, 1) 8.32 (8.51) 7.76 (7.82) 1.15 (1.14) 8.37 8.9 8.49 6.12 1.4
(4, 0) 8.93 (9.18) 9.21 (9.28) 1.02 (1.01) 8.96 9.4 9.13 7.34 1.3

Table 1. Comparison with Henderson & Miles’ (1994) experiment and theoretical prediction; f is
the dimensional frequency (in c.p.s.) and ∆ is the non-dimensional (see (3.1)) damping ratio.

where γ∗ is as defined above and δ∗ = Ω
1/2
0 + m2δ1 + m2γ∗. This approximation is

of interest because surface dilatational viscosity may be several orders of magnitude
larger than surface shear viscosity (Lopez & Hirsa 1998).

3. Comparison with the experiment by Henderson & Miles
In order to compare with HM94, we must consider the dimensional frequency f

and non-dimensional damping rate ∆:

f = (g/R)1/2[Im (Ω)/2π], ∆ = 2
[
gR/(πνf0)

]1/2
(−ReΩ), (3.1)

where f0 = (g/R)1/2[Im (Ω)/2π] is the dimensional inviscid frequency. We must
estimate the Marangoni elasticity parameter γ and the surface tension σ; we assume
that the density and kinematic viscosity are not affected by contamination. The effect
of σ is only felt through the Bond number B, and since B−1 is small, the results
below are fairly insensitive to σ in the reasonable range σ = 60−72.4 dyn cm−1. Then
we select γ = 0.8 as the value that gives a better agreement for damping rates and
σ = 62 dyn cm−1 as the value of surface tension that gives a better agreement for
frequencies. With those values of γ and σ and the known values of the remaining
dimensional parameters (ρ = 1 g cm−3, ν = 0.01 cm2 s−1, R = 2.766 cm, d = 3.80 cm),
the non-dimensional parameters Λ, B and C are 1.372, 120.93 and 6.94 × 10−5

respectively, and our estimates for f and ∆ are as given in table 1. In order to illustrate
that the results are fairly independent of σ we also give (between parentheses) the
frequencies and damping rates obtained for σ = 72.4 dyn cm−1; the insensitiveness to
σ gives us little confidence in our guess for surface tension, which should be estimated
by other means. As we anticipated in § 1, the comparison in table 1 shows that our
estimate of the damping rates (and thus the approximation with a finite Marangoni
elasticity) is reasonably good and significantly improves the approximation by HM94,
who considered an inextensible film. Also note that our estimate on the frequencies is
quite good. The slightly better results in Henderson & Miles (1998, table 2), included
viscous dissipation in the bulk, and should be compared with a similar approximation
including both finite Marangoni elasticity and viscous dissipation in the bulk; but
for the reasons explained at the end of § 3 (and remarked below, in (a)) we are not
considering such an approximation.
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Some remarks are now in order:
(a) The main source of damping in our theoretical results in table 1 comes from

the term Ωcont
1 , accounting for contamination. Thus, when trying to proceed with

higher-order, O(C)-terms, there is no reason to retain Ωbulk
2 (which was calculated in

MNV) but neglect Ωcont
2 (which is not calculated here).

(b) The value of γ in table 1 was in fact selected as that giving the maximum
value of |Ωcont

1 | for the first ((m, q) = (1, 0)) mode, which was the one exhibiting the
maximum discrepancy in the HM94 calculations. This maximum exceeds the value of
|Ωcont

1 | for inextensible film by a factor of 1.89 (instead of the factor 2 encountered for
free contact lines, Miles 1967) and, when using our formulas at the end of § 2, is seen
to decrease if either surfactant solubility or (dilatational or shear) surface viscosity is
present; thus these three effects would worsen the fit if taken into account.

(c) When using (1.7) we readily obtain an estimate of the Marangoni elasticity
coefficient, Γ0(dσ/dΓ0) ' 50 dyn cm−1, which is somewat larger than that giving a
large jump in damping rate in the experiment by Henderson (1998), which was
(Henderson 1998, figure 3) 14, 21 and 7 dyn cm−1 for lecithin, oleyl alcohol and
diolein respectively. According to the conclusions in Henderson (1998), a value of
50 dyn cm−1 would give a surface saturated with surfactant and thus an inextensible
film in this experiment, while this value gives an extensible film in our case. We
do not have an explanation for this discrepancy. In this connection, our formulas
above could be used for comparison if this experiment were performed with a pinned
contact line; in this case the effect of capillary hysteresis, added by Henderson (1998)
to get a good fit, would be unnecessary.

(d) Since we are using a phenomenological formula to model contamination that is
based on several ad hoc assumptions, we may wonder whether it makes any sense to
look for quite precise results (beyond the precision in table 1). In any event, the results
in table 1 show that Marangoni elasticity could be a significant factor in the large
damping rates measured in HM94 and might provide the main source of damping in
related contaminated water wave experiments, as already conjectured by Van Dorn
(1966). If this were confirmed (by further comparison with experiments, which are not
at present available) we would have safe ground on which to quantitatively model the
weakly-nonlinear dynamics of these surface waves and of the associated streaming
flow. The latter would be greatly affected by the free-surface boundary layer, whose
structure depends dramatically on Marangoni elasticity.

Research partially supported by DGES and NASA, under Grants PB97-0556 and
NAG3-2152. We are indebted to Professor John Miles for useful comments and
suggestions on an earlier version of the note.
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